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Overview of our ABL-Component Objectives

) Use numerical simulations to improve/augment
atmospheric turbulence characterization so that:

® phase-screen specification for optical propagation simulations
may be evaluated and possibly improved, and

® more intelligent modeling may proceed, admitting simulation
of larger-scale processes and the development of a reliable
atmospheric decision aid.
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The Problem with Stratified Fluids
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Challenges for ABL Simulation
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 Range of scales: from 200km to 100m (or smaller).

DoD UGC, June 2002, Austin Joe Werne CoRA, NWRA, Inc.



Challenges for ABL Simulation

 Range of scales: from 200km to 100m (or smaller).

 Non-Kolmogorov: current sub-grid-scale (SGS) turbulence
parameterization schemes are inadequate for stable stratification.

DoD UGC, June 2002, Austin Joe Werne CoRA, NWRA, Inc.



Challenges for ABL Simulation

 Range of scales: from 200km to 100m (or smaller).

 Non-Kolmogorov: current sub-grid-scale (SGS) turbulence
parameterization schemes are inadequate for stable stratification.

J Combined numerical/observational studies are feasible for
developing improved phase-screen descriptions, but simulations
of isolated turbulent layers still require state-of-the-art
techniques.
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Potential-Temperature Steps in the Stratosphere

Chen, Kelley, Gibson-Wilde, Werne & Beland, Annales Geophysicae, 2001
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Wind shear: Balloon Comparison

Coulman, Vernin & Fuchs, Applied Optics 34 5461 (1995)
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Mixing Layers through the Troposphere and Stratosphere

Coulman, Vernin & Fuchs, Applied Optics 34 5461 (1995)
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Sousy Radar over Harz, Germany
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Sousy Radar at Arecibo

SOUSY VHF Radar Harz 13 Mar 1995

Height (k)

Heignt profiles of the horizostal wind snd the wertiesl wind shear. The profiles were Lasesl Time
measared ar (427 LT (bokd limes) and 0534 LT (light lines). The horizoatal dashed lines mark the #.1-km

eight

Iarge-ampiitsde caciBaticed mark e occurrence of & Kebvin-Helmboliz inscabilicy [KHI). The velocaies
bhawe been scaled such thar 1 m 5™ comesponds so 100 m.

Rlster and Klostermeyer, Geophys. Astrophys. Fluid Dynamics, 26, 1983
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Radar Backscatter

Re ~ 106-107

DoD UGC, June 2002, Austin
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Ierkic, Woodman & Perillat, Radio Science 25, 941 (1990)
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Kelvin-Helmholtz at VTMX
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Kelvin-Helmholtz at CASES-99

Blumen, Banta, Burns, Fritts, Newsom, Poulos, Sun, Dyn. Atmos. Oceans, 2001
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Estes Park, Colorado, 1979 (photo by Bob Perney)
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Colorado Springs, Colorado, 2000 (photo by Tye Parzybok)
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Denver, Colorado, 1953 (photo by Paul E. Branstine)
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Noctilucent Clouds, Kustavi, Finland, 1989 (photo by Pekka Parviainen)

DoD UGC, June 2002, Austin Joe Werne CoRA, NWRA, Inc.



[ DNS Efforts |

Q Validate simulations
0 Characterize/quantify atmospheric turbulence

[ Phase Screen Specification |

0 Combine observation and simulation for long paths
O Quantify non-Kolmogorov effects

[ Turbulence Simulation Algorithm Development |

O SGS parameterizations
O Better upper boundary conditions
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[ Validate simulations
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Wind Shear Gravity-Wave Breaking

U=U_tanh(z/h) T
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3D Incompressible Navier-Stokes Solver

» Stream-function/vorticity formulation
OU+oxU= RetAu-VP+ F\T ® Fully spectral (3D FFT’s = 75% computation)
0,0+U-VO =Pe"A® « Radix 2,3,4,5FFT’s

V-u=0  Spectral modes and NCPUs must be commensurate

« Communication: shmem, global transpose, data
reduction

o Parallel 1/O every ~ 60 ot
PE 7
PE 6
PE 5 FFT {
PE 6
2 PE 4 T
PE 3 K | EE4
2 e
PE 1 PE 1 ——
PE O Y% PEO K
X K, y
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Headaches, woes, and what to do about them.
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Headaches, woes, and what to do about them.

O Typical 20-hour run on 500 processors generates 800 Gigabytes of data and
over 70,000 individual files.

O Interactive performance can be poor during large production runs.

A Center non-uniformity contributes to drudgery.
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Headaches, woes, and what to do about them.

O Typical 20-hour run on 500 processors generates 800 Gigabytes of data and
over 70,000 individual files.

O Interactive performance can be poor during large production runs.
A Center non-uniformity contributes to drudgery.

O Elaborate scripts automate job specification, source-code editing, compilation,
and submission as well runtime data transfers and migration off-line to archival
storage.

O FORTRAN code and accompanying Perl scripts run without modification at 6
supercomputer centers and 4 MPP architectures (T3E, O3k, SP, Compaq).

O DoD has adopted our batch-preparation and archival-storage routines as a
standard (PST, Werne, Gourlay).
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Wind shear

Vortex-Tube Morphology Werne, Meyer, Bizon & Fritts, 2001
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Kelvin-Helmholtz: Evolution
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Vortex-Tube Morphology Werne, Meyer, Bizon & Fritts, 2001

Kelvin-Helmholtz
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Werne, Meyer, Bizon & Fritts, 2001

Kelvin-Helmholtz

Vortex-Tube Morphology
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Vortex-Tube Morphology _ Werne, Meyer, Bizon & Fritts, 2001
Kelvin-Helmholtz
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Vortex-Tube Morphology _ Werne, Meyer, Bizon & Fritts, 2001
Kelvin-Helmholtz

DoD UGC, June 2002, Austin Joe Werne CoRA, NWRA, Inc.



Werne, Meyer, Bizon & Fritts, 2001

Kelvin-Helmholtz

Vortex-Tube Morphology

CoRA, NWRA, Inc.

Joe Werne

DoD UGC, June 2002, Austin



Vortex-Tube Morphology Werne, Meyer, Bizon & Fritts, 2001
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Vortex-Tube Morphology _ Werne, Meyer, Bizon & Fritts, 2001
Kelvin-Helmholtz
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Vortex-Tube Morphology _ Werne, Meyer, Bizon & Fritts, 2001
Kelvin-Helmholtz
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Wind shear: Balloon Comparison

Chen, Kelley, Gibson-Wilde, Werne & Beland, Annales Geophysicae, 2001
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Wind Shear: flow decomposition

3D flow field
fluctuations
horizontal average T

spanwise average of T-T
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Wind shear:

production and dissipation
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Stratified Turbulence Theory: thermal and viscous dissipation

Kolmogorov 1941 Bolgiano 1959

2 -1/3 2/3 2 -2/5 4/5 2/5
QrT=CHg Y T ,ﬁrT=CHF{| X r

2 2/3 2/3 2 4/5 2/5 6/5
AU=C & r AU=CRi x r
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Wind shear: 2"-order structure-function fits
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Wind shear: 2n-order structure-function fits

A U?=Cr*

Werne & Fritts, 2000
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U Structure Function Fits Werne, Meyer, Bizon & Fritts, 2002
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ABLE ACE anemometry data

Bruce Masson, 1996

Histogram of Slopes
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Gravity Wave: Evolution

Bizon, Werne & Fritts, 2001
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Gravity wave: Production and Dissipation

Bizon, Werne & Fritts, 2001
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Conclusions
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Conclusions

1.  Stratification restricts mixing dynamics to vertically confined regions.
2.  Entrainment zones maintain sharp thermal gradients that dominate optical effects.

3.  Mixing in the interior of turbulent layers reduces thermal gradients.

DoD UGC, June 2002, Austin Joe Werne CoRA, NWRA, Inc.



Conclusions

1.  Stratification restricts mixing dynamics to vertically confined regions.
2.  Entrainment zones maintain sharp thermal gradients that dominate optical effects.
3.  Mixing in the interior of turbulent layers reduces thermal gradients.
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comparison with the middle of a simulated shear layer agree with atmospheric
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Conclusions

1.  Stratification restricts mixing dynamics to vertically confined regions.
2.  Entrainment zones maintain sharp thermal gradients that dominate optical effects.
3.  Mixing in the interior of turbulent layers reduces thermal gradients.

4.  Mixing zones in wind-shear simulations duplicate morphology exhibited by cloud
observations.

5.  Potential-temperature profiles, duration, C;? profiles, and Ri profiles agree with balloon
measurements.

6.  Turbulence constants C, and C (relating x and € to C;? and C?) obtained from
comparison with the middle of a simulated shear layer agree with atmospheric
measurements, as do the spectral slope and inner scale.

7.  Breaking gravity waves, in the absence of shear, dissipate rapidly.

8.  Gravity-wave breaking is inherently out of balance.

9. Entrainment zones are non-stationary, inhomogeneous, and anisotropic; unfortunately
they also have the greatest impact on optical propagation.
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[ DNS Efforts |

Q Validate simulations
0 Characterize/quantify atmospheric turbulence

[ Phase Screen Specification |

0 Combine observation and simulation for long paths
O Quantify non-Kolmogorov effects

[ Turbulence Simulation Algorithm Development |

O SGS parameterizations
O Better upper boundary conditions
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| Phase Screen Specification |

[ Combine observation and simulation for long paths
d Quantify non-Kolmogorov effects
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Combine Simulation and Observation for an operational path
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Combine Simulation and Observation for an operational path ‘Q

#%‘ Coulman, Vernin & Fuchs, Applied Optics 34 5461 (1995)
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/c.ftz Combine Simulation and Observation for an operational path @

#f‘ Coulman, Vernin & Fuchs, Applied Optics 34 5461 (1995)
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Combine Simulation and Observation for an operational path @

#f‘ Coulman, Vernin & Fuchs, Applied Optics 34 5461 (1995)
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/c.ftz Combine Simulation and Observation for an operational path @

#f‘ Coulman, Vernin & Fuchs, Applied Optics 34 5461 (1995)
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Combine Simulation and Observation for an operational path @
Coulman, Vernin & Fuchs, Applied Optics 34 5461 (1995)
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[ DNS Efforts |

Q Validate simulations
0 Characterize/quantify atmospheric turbulence

[ Phase Screen Specification |

0 Combine observation and simulation for long paths
O Quantify non-Kolmogorov effects

[ Turbulence Simulation Algorithm Development |

O SGS parameterizations
O Better upper boundary conditions
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[Turbulence Simulation Algorithm Development]

O SGS parameterizations
 Better upper boundary conditions
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RESOLVED FIELDS AND SFS MOMENTUM FLUXES

Ui=U; +u; = /Ui(m;)G(mi, ' )dx 4 u;

The SFS fluxes in LES are:

T-ij = Ung — UE Uj



RESOLVED FIELDS AND SFS MOMENTUM FLUXES

U;=U;, +u; = /Ui(m;)(}(mi, '’ )dx; 4 u;

The SFS fluxes in LES are (Germano, 1986):

T@j — U@UJ - Ui Uj — L@j +Oij + R@j

“Leonard” L;; =U; U; —U; U;
Cross O@j = Uiuj + Uju@ — U@E_ U
Reynolds R;; =wu;—u;u

Galilean invariant



Modeling Tij
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Modeling Tij

e Eddy viscosity models T;; = —214.5;;

— Smagorinsky v; = (C4l)?|S]
— TKE vy = CLiv/ Ey

— length scale !l = Ay and [ = f(S,N)
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Modeling Tij

e Eddy viscosity models T;; = —214.5;;

— Smagorinsky v; = (C4l)?|S]
— TKE vy = Crlv E;
— length scale !l = Ay and [ = f(S,N)

e Mixed models T;; = L;; — 2v4.5;;

— L;; depends on the resolved field

Horizontal Array Turbulence Study (HATS) was designed to test SGS techniques.
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HORIZONTAL ARRAY TURBULENCE STUDY (HATS)

e Field campaign to measure T;;, T;g over a wide range of
stratification Horst et al. (2002) NCAR, JHU, PSU

e Based on the horizontal array technique Tong et
al. (1998), (1999) and Porté-Agel et al. (2001)

e 38 cases, 4 different sonic arrays, —2 < z/L < 2

Oys
s-line ® & & 2 ®

z Zd

dyd
; Y A A A A A A

HATS data is available from T. Horst, horst@ucar.edu




Horizontal Array Turbulence Study (HATS)

Four different sonic arrays, 38 cases

z = 6.90m, dy = 6.70m
z = 8.66m, dy = 4.33m
z = 8.66m, dy = 2.17m
z =5.15m, dy = 0.63m

z = 3.45m, dy = 3.35m
z=433m, dy = 2.17m
z=4.33m, dy = 1.08m
z =4.15m, dy = 0.50m

Tom Horst et al (2002), NCAR, JHU, PSU
Pete Sullivan, NCAR
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ARRAY-2

Z. = 8.66m, dy, = 4.33m

Z,=4.33m, dy,=2.17/m
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ARRAY-3

Z, = 8.66m, dy,=2.17/m

z. = 4.33m, dy, = 1.08m
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ARRAY-4

Z.=5.15m

dy, = 0.63m
Zy=4.15m
dy4 = 0.50m
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AN EXAMPLE OF LATERAL (Y) FILTERING
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AN EXAMPLE OF LATERAL (Y) FILTERING
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We use top-hat filtering in y and Gaussian filtering in x or ¢



Model-Data Correlations
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Model-Data Correlations
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Gravity-Wave Radiation Conditions
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Gravity-Wave Radiation Conditions

Linear Boussinesq Equations

du—+ Oyp =10
Ow+0,p— Ri0=0
0 +w=0
V-u=0
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Gravity-Wave Radiation Conditions

. . : Plane Waves
Linear Boussinesq Equations
( '\ { —Keks ‘\
— Rif = w k2
atw = azp Ri 6 0 - . — * ﬁ-a'[k-x—u.'i]
V-u=0
\p/ \ -wk./
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Gravity-Wave Radiation Conditions

. . : Plane Waves
Linear Boussinesq Equations

( i \"I { —Keks ‘\ Dispersion Relation

3tu =+ aa:p = ] . & ik

dw + .p— Ri =0 w 2 el S gl %

- — ﬁi[k-x—u.'!]
ReTu=0 0 2 it K2+ K2 = k2
V-u=0
\p/ \ -wk./
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Gravity-Wave Radiation Conditions

Linear Boussinesq Equations

du—+ Oyp =10
Ow+0,p— Ri0=0
0 +w=0
V-u=0

Elliptic Equation for Pressure
(How should we handle BC's?)

Vp = Rid.0

DoD UGC, June 2002, Austin

)

Plane Waves

( i \"I
w

o

\ p/

I'H - k.rkz \
J2

T

k2 Jiw

\ —wk, /

Joe Werne

P-i' (beze—wt)

Dispersion Relation

w?[Ri = ki/k*

k2 + k2 = k2

CoRA, NWRA, Inc.



Gravity-Wave Radiation Conditions

Plane Waves
Linear Bc(;ussi:_es; Equati[(])ns ( A\ { —Keks ‘\ Dispersion Relation
u =
oyw + 32;; = R:g =0 (1) b B ks (ke x—wt) ol =R/ @
20 +w=0 @ T ol | ki | Bk = 2
V-u=10
l\ P /j \ _“sz /]

Klemp & Durran (1983):

Elliptic Equation for Pressure Solve (1) & (2) subject to (3)
(How should we handle BC's?)

V?p = Rid.0 ‘ (RE' - wg) w = —wk,P
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Gravity-Wave Radiation Conditions

Linear Boussinesq Equations Plane Waves
i+ up = 0 [ [ —k:kz‘\ Dispersion Relation
ow—+0,p—Rif=0 (1) - wi J2 s w?/Ri =k2/k? (3)
00 +w=0 (2 p B k2 i ‘ K2 4 k2 = &2
V-u=0
\p/ \ -wk./
o nton B3 bt
V2p = Ri 0.6 ) (RE' —yﬁ) w = —wk,P

For low frequency ...

P ~ wVRi [k,
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Gravity-Wave Radiation Conditions

Linear Boussinesq Equations Plane Waves
o _ [ ( ‘krkzﬁ Dispersion Relation
iu+8$p—0 2y 2 412
+d,p— Ri60 =0 (1) l e k2 P w*/Ri = ki/k* (3)
0 +w=0 (2 p B 2 i ¢ 2R 2
l\ p/ \ —wk, /]

Klemp & Durran (1983):
olve (1) & (2) subject to (3)

yﬁ) w = —wk,P ‘

Elliptic Equation for Pressure
(How should we handle BC's?)

Vp = Rid.0 ‘ (RE‘ B

For low frequency ...

P ~ wVRi [k,
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Gravity-Wave Radiation Conditions

Linear Boussinesq Equations Plane Waves
o _ [ ( ‘krkzﬁ Dispersion Relation
i+ Oyp =10 S
+0,p— Ri0=0 (1) w ﬁ:f P w{Ri =ki/k* (3)
0 +w=0 (2 I p B 2 i ¢ 2R 2
l\ p/ \ —wk, /]

Klemp & Durran (1983):
olve (1) & (2) subject to (3)

yﬁ) w = —wk,P ‘

Elliptic Equation for Pressure
(How should we handle BC's?)

Vp = Rid.0 ‘ (RE‘ B

For low frequency ...

P ~ wVRi [k,

OK if kz>>kx, but other waves are trapped!
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Gravity-Wave Radiation Conditions
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Gravity-Wave Radiation Conditions

=

Linear Boussinesq Equations

[0 + a(z)] u+ 0zp =0

0 + a(z)]w+0,p— Rif =0
[0 +n(2)]0 +w =0

Vu=0

Vp = Ri 0.0 — ofz)'w
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Gravity-Wave Radiation Conditions

=

Linear Boussinesq Equations

[0 + a(z)] u+ 0zp =0

0 + a(z)]Jw+d.p— Rif =0

[0 +n(2)]0 +w =0
V-u=0

Vp = Ri 0.0 — ofz)'w

1. If Ol(z) too small, reflections from outer boundary.

2. If 0L(z) too large, reflections from inner boundary.
3. If A > L, reflect from II =» must make L large.
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Gravity-Wave Radiation Conditions

Analyze - and - by recasting as a scattering problem.
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Gravity-Wave Radiation Conditions

Analyze ‘ and ‘ by recasting as a scattering problem.

=olg)
="z Transmitted

Linear Boussinesq Equations

[0 + a(2)]u+ 0sp =0
[h(2)0; + a(2)]w + 9,p — Ri6 =0

[0: +1(2)]6 +w =0
V-u=0

Feflected

Incident
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Gravity-Wave Radiation Conditions

Analyze ‘ and ‘ by recasting as a scattering problem.

Step function Raised cosine
_C'H:EI_E .ﬁ.r Case H

Case H
10 = '?__}}}}'E'F;J:-"‘

1 6? T T T T T T T T

a=ia
oy

20 4 20 4 x
o

|.I} N N R T N
o 0B % 0B
= g5 \ = pgq
& # i =i
0 04
=] =2
T 02 T 02 '

0.0 4 0o 4

] Z0 40 60 BO o 20 40 €0 BQ H] Z0 40 60 B0
1. Reflection is reduced at high 6. 2. Smooth variation decreases reflection.
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Gravity-Wave Radiation Conditions

=
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Gravity-Wave Radiation Conditions
- Try a different approach: Start with the solution you want.
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Gravity-Wave Radiation Conditions
- Try a different approach: Start with the solution you want.

Damped Plane Waves

[ u ‘\‘ { =k, + iB(z)kak; fw

w k2 )
_ pillex—wt)+ (ks fu) fn A(8)ds
( k2 fiw
\p/ \ —wk, /
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Gravity-Wave Radiation Conditions
- Try a different approach: Start with the solution you want.

Linear Boussinesq Equations

3;9"'?1):0
V-u=10

Dispersion Relation

W2/ Ri = k2/k?

DoD UGC, June 2002, Austin

r/u‘\]

0

\»/

Damped Plane Waves

{ —kok, + iB(2)kyky fw

k!
F o .
pillex—wt)+ (ks fu) fn A(8)ds

ki fiw

\ —wk, /
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Gravity-Wave Radiation Conditions
- Try a different approach: Start with the solution you want.

Damped Plane Waves

Linear Boussinesq Equations
[ u \‘ { =k, + iB(z)kak; fw

dw+ 0,p— Rif =0 ' w ks
V-u=0
\ p /] \ —wk, /
1 Dispersion Relation
wi,th' = ki,-’kﬂ

du+ dp= -0,
dw + d.p— Ri@ = —Wy 3 where [y = pk, /w

i+ w =10 Wo = —pk,/w
V-u=10
DoD UGC, June 2002, Austin Joe Werne
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Gravity-Wave Radiation Conditions
- Try a different approach: Start with the solution you want.

Damped Plane Waves

Linear Boussinesq Equations
[ u \‘ { =k, + iB(z)kak; fw

dw+0,p—Rif=0 l wl k
V-u=0
\ p /] \ —wk, /
1 Dispersion Relation
wi,th' = ki,-’kﬂ

du+ dp= -0,
dw + d.p— Ri@ = —Wy 3 where [y = pk, /w '

i+ w =10 Wo = —pk,/w
V-u=10
DoD UGC, June 2002, Austin Joe Werne

ilkx—wt)+(k; fu) ‘[; A(s)ds

Uy = —0,p

(O — B) Wo = 0.p
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Gravity-Wave Radiation Conditions
- Try a different approach: Start with the solution you want.

Damped Plane Waves

Linear Boussinesq Equations
[ u \‘ { =k, + iB(z)kak; fw

— R0 = w k2
Ow +0.p — R =0 - v _ * pilkx—wt)+ (k. fw) [ B(s)ds
V-u=i
\ p /] \ —wk, /
1 Dispersion Relation
wi,f K = ki,-’kﬂ

New System of Equations
for Damping Layer (PML)

du+ dp= -0,
dw + 8.p — Ri 6 = —W, 3 where = pkg/w - ' Uy = —8,p
8,0 +w =0 W, = —pk fw (O — B) Wo = 0.p

V-u=10
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Gravity-Wave Radiation Conditions

- PML at finite Re

(8. — Re™'V?) u+ up = —Usf — Re™'0. (20.Us — Us B + Us')
(f.:-'; — Re™’ ?2) w+8,p— Rif = -Wy8+ Re™ '8, (Eﬂ UsB — Usf° + Lﬁﬁ')

(Bt—Pe"?E)E+w=—PE (?333,{3'—993 +93ﬁ)
V-u=1(

BLL'FD = =—Uzp
(at — J—ﬂ Wo = a.p

{5': - .5} Ug=—u
(& — B)Us = —a,Us

(8, — B) B3 = —D.8
(8, — ) 6, = —0,05
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Gravity-Wave Radiation Conditions

References

1. Klemp & Durran, 1983: An upper boundary condition permitting internal gravity wave radiation in
numerical mesoscale models, Monthly Weather Review 111, 430-444.

2. Abarbanel, Gottlieb & Hesthaven, 1999: Well-posed Perfectly Matched Layers for Advective Acoustics, JCP
154, 266-283.

3. Tam, Auriault & Cambuli, 1998: Perfectly Matched Layer as an Absorbing Boundary Condition for the
Linearized Euler Equations in Open and Ducted Domains, JCP 144, 213-234.

4. Hesthaven, 1998: On the Analysis and Construction of Perfectly Matched Layers for the Linearized Euler
Equations, JCP 142, 129-147.

5. Collino & Monk, 1998: The Perfectly Matched Layer in Curvilinear Coordinates, Siam J. Sci. Comput. 19,
2061-2090.

6. Hu, 1996: On Absorbing Boundary Conditions for Linearized Euler Equations by a Perfectly Matched Layer,
JCP 129, 201-2109.

DoD UGC, June 2002, Austin Joe Werne CoRA, NWRA, Inc.



ABL Future Work Wish List

1 Continued comparison with data
—> o (CASES-99
—> o \TMX
—> o Ajr Force Balloon and Radar
1 A priori tests and SGS development
—> o [Eddy-viscosity models
—> ® \/elocity-estimation models
® Event catalog for meso-scale models
1 Characterize nature of stratified turbulence
—> ® Turbulence/billow/mean-flow
—> @ Stability profile
—> @ Turbulence anisotropy
1 Investigate impact of initial conditions
e Amplitude and shape of noise spectrum
—> o (Qptimal perturbations
® Vary Ri and nonlinear thermal structure
1 High-resolution wave-breaking solutions
—> o High-Re incompressible solutions
1 Spatial modulation and distribution of turbulence
® Multiple billow/wave interactions
—> @ Phase-screen specification using combined DNS/observation results
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